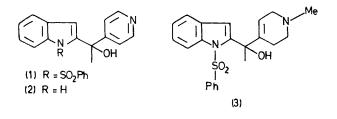
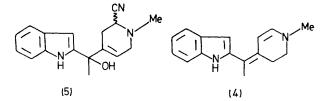
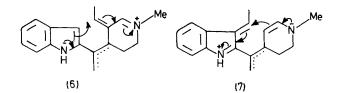
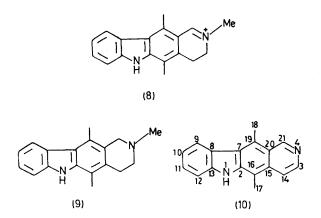
Novel Synthesis of the Indole Alkaloid Ellipticine[†]


By RICHARD BESSELIÈVRE, CLAUDE THAL, HENRI-PHILIPPE HUSSON, and PIERRE POTIER (Institut de Chimie des Substances Naturelles, C.N.R.S., 91190-Gif/Yvette, France)


Summary A novel synthesis of the indole alkaloid ellipticine is described, the last step of which follows a possible biogenetic pathway. THE indole alkaloids of the ellipticine series have aroused interest owing to their antitumour properties.¹ Several syntheses have been published.² We describe a novel


† For numbering used in this paper see ref. 3.


synthesis of ellipticine (10) which is reminiscent of a possible biosynthetic pathway³ through an intermediate immonium ion like (6) or (7).

Compound (1) was synthesized by condensation of 2lithio-1-sulphobenzoylindole with 4-acetylpyridine.⁴ Nmethyltetrahydroellipticine $(9)^5$ was obtained from (1) by two different routes. (a) Iodomethylation of (1) provides the corresponding pyridinium salt which is reduced with $NaBH_4$ to (3) (97%) [oil; $C_{22}H_{24}N_2O_3S$; M⁺ 396, ¹H n.m.r., δ (CDCl₃; Me₄Si) 1.87 (3H, s, 17-Me), 2.37 (3H, s, NMe), 5.46 (1H, m, 20-H) and 6.86 (1H, s, 7-H)]. Treatment of (3)

with KOBu^t in Me₂SO leads to the isomeric (Z and E) dienamines (4) (89%) [oil; C₁₆H₁₈N₂; M⁺ 234; ¹H n.m.r., δ (CDCl₃; Me₄Si) 2.01 br (3H, s, 17-Me), 2.68 (3H, s, NMe), 5.50 (1H, d, J_{AB} 8 Hz, 20-H), 6.00 (1H, d, J_{AB} 8 Hz, 21-H), and 6.41 (1H, d, 7-H)]. Treatment of (4) in acetic acid with a Mannich reagent prepared by condensation of dimethylamine with acetaldehyde⁶ affords N-methyltetrahydroellipticine (9) $(2 \cdot 2\%)$.

(b) Compound (1) was hydrolysed to (2) (63%), m.p. 221, $C_{15}H_{14}N_2O$, M^+ 238 the iodomethylate of which was reduced with NaBH₄ in the presence of a large excess of KCN⁷ to (5) (56%) $[C_{17}H_{19}N_{3}O; M^{+} 281; \nu_{max} (CHCl_{3}) 2225 \text{ cm}^{-1}$ $(C \equiv N)$]. The same Mannich reaction used in the case of compound (4) gives the immonium salt (8) via (6) or (7).9 Compound (8) was treated without isolation with NaBH, affording N-methyltetrahydroellipticine (9) $\lceil 24\% \rangle$ yield from (5)].

Treatment of (9) with Pd-C in boiling decalin leads to ellipticine (10) (36%).

(Received, 2nd December 1974; Com. 1457.)

¹ M. Hayat, G. Mathé, E. Chenu, M. M. Janot, P. Potier, N. Dat-Xuong, A. Cave, T. Sévenet, C. Kan-Fan, J. Poisson, J. Miet,

J. Le Men, F. Le Goffic, A. Gouyette, A. Ahond, L. K. Dalton, and T. A. Connors, Biomedicine, 1974, 21, 101. ² R. B. Woodward, G. A. Iacobucci, and F. A. Hochstein, J. Amer. Chem. Soc., 1959, 81, 4434; P. A. Cranwell and J. E. Saxton, J. Chem. Soc., 1962, 3482; T. R. Govindachari, S. Rajapa, and V. Sudarsanam, Indian J. Chem., 1963, 1, 247; R. N. Stillwell, Ph.D. Thesis, Harvard University, 1964; L. K. Dalton, S. Demerac, B. C. Elmes, J. W. Loder, J. M. Swan, and T. Teitei, Austral. J. Chem., 1967, 20, 2715; K. N. Kilminster and M. Sainsbury, J.C.S. Perkin I, 1972, 2264; F. Le Goffic, A. Gouyette, and A. Ahond, Tetrahedron, 1973, 29, 3357.

³ P. Potier and M.-M. Janot, Compt. rend., 1973, 276, 1727.

 ⁴ R. J. Sundberg and H. F. Russell, J. Org. Chem., 1973, 28, 3324.
⁵ S. Goodwin, A. F. Smith, and E. C. Horning, J. Amer. Chem. Soc., 1959, 81, 1903.
⁶ H. Kuhn and O. Stein, Chem. Ber., 1937, 70, 567; A. Ek and B. Witkop, J. Amer. Chem. Soc., 1954, 76, 5579.
⁷ (a) J. A. Beisler and E. M. Fry, J. Org. Chem., 1970, 35, 2809; (b) J. A. Beisler, Tetrahedron, 1969, 26, 1961; (c) E. M. Fry, J. Org. Chem., 1964, 29, 1647.